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Abstract
In this work, employing the exchange-only orbital-dependent functional, we
have obtained an optimized effective potential using the simple iterative method
proposed by Kümmel and Perdew (2003 Phys. Rev. Lett. 90 43004). Using this
method, we have solved the self-consistent Kohn–Sham equations for closed-
shell simple metal clusters of Al, Li, Na, K, and Cs in the context of the jellium
model. The results are in good agreement with those obtained by a different
method by Engel and Vosko (1994 Phys. Rev. B 50 10498).

1. Introduction

In spite of the success of the local density approximation (LDA) [1] and the generalized
gradient approximations (GGA) [2, 3] for the exchange–correlation (XC) part of the total
energy in the density functional theory (DFT) [4], it is observed that in some cases these
approximations lead to qualitatively incorrect results. On the other hand, appropriate self-
interaction corrected versions of these approximations are observed [5] to lead to correct
behaviours. These observations motivate one to use functionals in which the self-interaction
contribution is removed exactly. One of the functionals which satisfies this constraint is the
exact exchange energy functional. Using the exact exchange functional leads to the correct
asymptotic behaviour of the Kohn–Sham (KS) potential as well as to correct results for the
high-density limit in which the exchange energy is dominant. Given an orbital-dependent
exchange functional, one should solve the optimized effective potential (OEP) integral equa-
tion [6–8] to obtain the local exchange potential which is used in the KS equations. Application
of this integral equation to three-dimensional systems [9–11] involves considerable technical
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difficulty and has some limitations. Recently, Kümmel and Perdew [12, 13] proposed an
iterative method which allows one to solve the OEP integral equation accurately and efficiently.

In this work, using the exact exchange OEP method, we have obtained the ground state
properties of simple neutral N-electron metal clusters of Al, Li, Na, K, and Cs with closed-
shell configurations corresponding to N = 2, 8, 18, 20, 34, and 40 (for Al, only N = 18
corresponds to a real Al cluster, with six atoms). However, it is a well-known fact that the
properties of alkali metals are dominantly determined by the delocalized valence electrons. In
these metals, the Fermi wavelengths of the valence electrons are much larger than the metal
lattice constants and the pseudopotentials of the ions do not significantly affect the electronic
structure. This fact allows one to replace the discrete ionic structure by a homogeneous
positive charge background; this is called the jellium model (JM). For closed-shell clusters,
the spherical geometry is an appropriate assumption [14–16] and, therefore, we apply the JM
to metal clusters by replacing the ions of an N-atom cluster with a sphere of uniform positive
charge density and radius R = (z N)1/3rs , where z is the valence of the atom and rs is the bulk
value of the Wigner–Seitz (WS) radius for valence electrons. For Al, Li, Na, K, and Cs we
take rs = 2.07, 3.28, 3.93, 4.96, and 5.63, respectively.

The organization of this paper is as follows. In section 2 we explain the calculational
schemes. Section 3 is devoted to the results of our calculations and, finally, we conclude this
work in section 4.

2. Calculational schemes

In the JM, the total energy of a cluster with exact exchange is given by

Ex−JM[n↑, n↓, rs ] = Ts[n↑, n↓] + Ex [n↑, n↓] + 1
2

∫
dr φ([n, n+]; r)[n(r)− n+(r)], (1)

in which

Ex =
∑
σ=↑,↓

Nσ∑
i, j=1

∫
dr dr′ φ

∗
iσ (r)φ

∗
jσ (r

′)φ jσ (r)φiσ (r′)
|r − r′| , (2)

and

φ([n, n+]; r) = 2
∫

dr′ [n(r′)− n+(r′)]
|r − r′| . (3)

Here, the background charge density is given by

n+(r) = nθ(R − r); n = 3

4πr3
s

(4)

and n(r) is calculated from

n(r) =
∑
σ=↑,↓

Nσ∑
i=1

|φiσ (r)|2 (5)

where φiσ (r) are the KS orbitals obtained from the self-consistent solutions of the set of
equations

(ĥKSσ − εiσ )φiσ (r) = 0. (6)

In equation (6),

ĥKSσ = −∇2 + veffσ (r), (7)

veffσ (r) = v(r) + vH(r) + vxσ (r) (8)

vH(r) = 2
∫

dr
n(r′)

|r − r′| . (9)

All equations throughout this paper are expressed in Rydberg atomic units.
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To solve the KS equations, one should first calculate the local exchange potential from
the exchange energy functional. This is done via the solution of the OEP integral equation.
Recently, Kümmel and Perdew [12, 13] have proved in a simple and elegant way that the OEP
integral equation is equivalent to the equation

Nσ∑
i=1

ψ∗
iσ (r)φiσ (r) + c.c. = 0, (10)

in which φiσ are the self-consistent KS orbitals and ψiσ are orbital shifts which are obtained
from the solution of the following inhomogeneous KS equations:

(ĥKSσ − εiσ )ψ
∗
iσ (r) = Qiσ (r), (11)

with

Qiσ (r) = −[vxσ (r)− uxiσ (r)− (v̄xiσ − ūxiσ )]φ∗
iσ (r). (12)

εiσ are the KS eigenvalues which satisfy equation (6), and in the right-hand side of
equation (12), vxσ (r) are the optimized effective potential and

uxiσ (r) = − 2

φ∗
iσ (r)

Nσ∑
j=1

φ∗
jσ (r)

∫
dr′ φ

∗
iσ (r

′)φ jσ (r′)
|r − r′| , (13)

v̄xiσ =
∫

dr φ∗
iσ (r)vxσ (r)φiσ (r), (14)

ūxiσ =
∫

drφ∗
iσ (r)uxiσ (r)φiσ (r). (15)

At the starting point for solving the self-consistent OEP equations (11)–(15), the self-
consistent KLI [17] orbitals and eigenvalues are used as input. Then we solve equation (11)
to obtain the orbital shifts ψiσ . In the next step, we calculate the quantity

Sσ (r) =
Nσ∑
i=1

ψ∗
iσ (r)φiσ (r) + c.c., (16)

the deviation of which from zero is a measure for the deviation from the self-consistency of
the OEP KS orbitals. This quantity is used to construct a better exchange potential from

vnew
xσ (r) = vold

xσ (r) + cSσ (r). (17)

With this vnew
xσ (r) and keeping the KS eigenvalues and orbitals fixed, we repeat the solution

of equation (11). Repeating the ‘cycle’ (11), (16), (17) several times, the maximum value of
Sσ (r) will decrease to a desired small value (in our case down to 10−8 au). After completing
cycles, the vnew

xσ in conjunction with the KS orbitals are used to construct a new effective
potential for ‘iterating’ the KS equations (6). The value of c in equation (17) is taken to be
30 as suggested in [13]. We have used ten cycles between two successive iterations. These
procedures are repeated until the self-consistent OEP potentials are obtained.

3. Results and discussion

Taking spherical geometry for the jellium background, and the solution of the self-consistent
KS equations, we have obtained the ground state properties of closed-shell 2, 8, 18, 20, 34,
and 40-electron neutral clusters of Al, Li, Na, K, and Cs in the exact exchange jellium model
and compared the results with those from the KLI and LSDA schemes.
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Figure 1. Source terms q(1)l=0,σ and q(2)l=0,σ in atomic units for Na2. As is obvious, the two terms
are equal and opposite in sign, so the orbital shift for N = 2 vanishes and the KLI and OEP results
coincide.

To solve the KS and OEP equations for spherical geometry we take

φiσ (r) = χiσ (r)

r
Yli ,mi (�) (18)

and

ψiσ (r) = ξiσ (r)

r
Yli ,mi (�). (19)

Substituting equations (18) and (19) into (11), the inhomogeneous KS equation reduces
to [

d2

dr2
+ εiσ − veffσ (r)− li (li + 1)

r2

]
ξiσ (r) = qiσ (r), (20)

in which

qiσ (r) = q(1)iσ (r) + q(2)iσ (r), (21)

with

q(1)iσ (r) = [vxcσ (r)− v̄xiσ + ūxiσ ]χiσ (r), (22)

and

q(2)iσ (r) = 2
Nσ∑
j=1

li +l j∑
l=|li −l j |

4π

2l + 1
χ jσ (r)Bσ (i, j, l; r)

[
I (l j m j , li mi , lm j − mi )

]2
. (23)

The quantities B and I in equation (23) are defined as

Bσ (i, j, l; r) =
∫ r

r ′=0
dr ′ χiσ (r

′)χ jσ (r
′)

r ′l

r l+1
+

∫ ∞

r ′=r
dr ′ χiσ (r

′)χ jσ (r
′)

r l

r ′l+1 (24)

I (l j m j , li mi , lm) =
∫

d� Y ∗
l j m j

(�)Yli mi (�)Ylm(�), (25)
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Figure 2. (a) Source terms qlσ in atomic units for Na8 and (b) for Li18. For Na8, only l = 0 and
l = 1 orbitals are occupied for each spin component, whereas for Li18, the orbitals with l = 0, 1, 2
are occupied.

and the bar over I 2 implies averaging over mi and m j . Also, the expression for ūxiσ reduces
to

ūxiσ = −2
Nσ∑
j=1

li +l j∑
l=|li −l j |

4π

2l + 1

[
I (l j m j , li mi , lm j − mi )

]2
∫ ∞

0
dr χiσ (r)χ jσ (r)Bσ (i, j, l; r).

(26)

In figure 1, the source term components q(1)l=0,σ and q(2)l=0,σ are plotted as functions of the
radial coordinate. As is seen, they are equal and opposite in sign, so they lead to zero orbital
shift, i.e., ξl=0,σ (r) = 0. This result in turn leads to the coincidence of the KLI and OEP
results.

In figures 2(a) and (b) the self-consistent source terms qlσ (r) of equation (22) are plotted
as functions of the radial coordinate for Na8 and Li18, respectively. The corresponding orbital
shifts ξlσ are shown in figures 3(a) and (b). It should be noted that qiσ (r) and ξiσ (r) must
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Figure 3. Orbital shifts ξlσ in atomic units (a) for Na8 and (b) for Li18.

behave such that∫
dr Qiσ (r)φiσ (r) = 0 (27)

and ∫
drψ∗

iσ (r)φiσ (r) = 0 (28)

are satisfied.
In order to solve the self-consistent OEP equations, we use the KLI self-consistent results

as input. For the KLI calculations, we use (equation (23) of [13] with ψiσ (r) = 0)

vKLI
xσ (r) = 1

2nσ (r)

Nσ∑
i=1

{φiσ (r)φ∗
iσ (r)uxiσ (r) + |φiσ (r)|2(v̄xiσ − ūxiσ )} + c.c. (29)

The self-consistent exchange potentials of Li2 and Al18 are plotted in figures 4(a) and (b),
respectively. For comparison, the LSDA exchange–correlation potentials are also included.
One notes that in the Li2 case, the KLI and OEP potentials are completely coincident,whereas in
the Al case, the KLI and OEP potentials coincide only in the asymptotic region. On the other
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Figure 4. Exchange potentials in KLI and OEP schemes and exchange–correlation potentials in the
LSDA, in rydbergs, for (a) Li2 and (b) for Al18. Here 18 refers to the number of electrons, which
is equivalent to six Al atoms. For Li2 the KLI and OEP results completely coincide, whereas for
Al18 the coincidence occurs in the asymptotic region. The LSDA has incorrect exponential decay,
whereas the KLI and OEP schemes give correct 1/r decays.

hand, the LSDA potential, because of having the wrong exponential asymptotic behaviour,
decays faster than the KLI and OEP ones, which have correct asymptotic behaviours, going
as 1/r . In the Al case, N = 18 refers to the number of electrons, which corresponds to the
number n = 6 of Al atoms.

In figures 5(a) and (b), we have shown the self-consistent densities for Li2 and Al18,
respectively. As in the potential case, for Li2 the KLI and OEP densities completely coincide,
whereas for Al18 the coincidence is only in the asymptotic region.

In table 1, we have listed the self-consistent calculated ground state properties of the
closed-shell clusters of Al, Li, Na, K, Cs for N = 2, 8, 18, 20, 34, and 40. For comparison of
our OEP results with those obtained by Engel and Vosko (EV) [18], we have also included the
results for Al, Na, and Cs. The EV results are based on gradient expansion which, in principle,
is valid only for slow variations of density as in a bulk solid. However, for finite systems such
as clusters or surfaces, the EV results may differ from the exact OEP results. Comparison
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Figure 5. Densities in atomic units (a) for Li2 and (b) for Al18. Here, as for the potentials, we have
full coincidence for Li2 and asymptotic coincidence for Al18.

of our OEP total energies with those of EV for Na clusters shows a difference of 0.002% on
average. On the other hand, the EV exchange energies differ, on average, by 0.001% and the
average difference in εH is 0.08%. From the computational cost point of view, these quite
small differences make the EV method advantageous for calculations within above-mentioned
accuracies.

Now we compare the total energies and the exchange energies in the KLI, OEP, and
LSDA schemes. Comparison of the total energies shows that the OEP energies, on average,
are 1.2% less than those of the KLI scheme. We do not compare the total energies of OEP and
LSDA schemes because in the LSDA there is a correlation contribution. On the other hand,
comparison of the exchange energies shows that on average, the exchange energies from the
OEP scheme are 0.33% more negative than those from the KLI scheme, whereas they are 9%
more negative than those from the LSDA scheme.

Another feature in the OEP scheme which should be noted is the contraction of the KS
eigenvalue bands relative to those of the KLI scheme. The results in table 1 show that for
all N , the relation 
OEP < 
KLI holds. Here, 
 = εH − εL is the difference between the
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Table 1. Absolute values of total and exchange energies as well as highest occupied and lowest
occupied Kohn–Sham eigenvalues in rydbergs. The LSDA total energies include the correlation
energies as well.

LSDA KLI

Atom rs N −E −Ex −εL −εH −E −Ex −εL −εH

Alb 2.07 2 0.0944 0.5936 0.3821 0.3821 0.0557 0.7016 0.5973 0.5973
8 0.3087 2.7822 0.6957 0.3806 −0.0660 3.0178 0.8552 0.5418

18 0.4519 6.6899 0.8606 0.3411 −0.6023 7.0693 0.9710 0.4618
20 0.6444 7.4183 0.8556 0.3215 −0.5493 7.7898 0.9662 0.4333
34 0.7603 13.1379 0.9522 0.3103 −1.4409 13.7043 1.0356 0.4066
40 1.0806 15.3585 0.9497 0.3082 −1.6022 15.8635 1.0369 0.3996

Li 3.28 2 0.2327 0.4324 0.2736 0.2736 0.1866 0.5074 0.4203 0.4203
8 1.0141 1.9015 0.4074 0.2752 0.6708 2.0538 0.5097 0.3779

18 2.3050 4.4733 0.4714 0.2598 1.3930 4.7233 0.5404 0.3338
20 2.6056 4.9417 0.4681 0.2303 1.5677 5.1710 0.5316 0.2992
34 4.4619 8.6619 0.5065 0.2494 2.5990 9.0347 0.5570 0.3061
40 5.2635 10.1016 0.5014 0.2267 2.9843 10.3981 0.5491 0.2794

Na 3.93 2 0.2462 0.3787 0.2381 0.2381 0.1988 0.4428 0.3627 0.3627
8 1.0737 1.6290 0.3333 0.2402 0.7465 1.7551 0.4177 0.3249

18 2.4664 3.8049 0.3777 0.2297 1.6128 4.0135 0.4338 0.2896
20 2.7664 4.1991 0.3748 0.2018 1.7944 4.3852 0.4250 0.2577
34 4.7746 7.3347 0.4022 0.2232 3.0446 7.6461 0.4424 0.2679
40 5.6075 8.5495 0.3976 0.2002 3.4899 8.7840 0.4337 0.2412

K 4.96 2 0.2448 0.3174 0.1981 0.1981 0.1970 0.3693 0.2979 0.2979
8 1.0596 1.3306 0.2594 0.2006 0.7553 1.4280 0.3245 0.2658

18 2.4442 3.0822 0.2874 0.1943 1.6667 3.2447 0.3294 0.2389
20 2.7275 3.3986 0.2851 0.1700 1.8420 3.5380 0.3214 0.2120
34 4.7230 5.9117 0.3030 0.1908 3.1617 6.1552 0.3320 0.2229
40 5.5338 6.8879 0.2995 0.1701 3.6226 7.0565 0.3234 0.1988

Cs 5.63 2 0.2382 0.2875 0.1789 0.1789 0.1907 0.3335 0.2669 0.2669
8 1.0252 1.1904 0.2271 0.1816 0.7341 1.2742 0.2833 0.2376

18 2.3652 2.7459 0.2490 0.1768 1.6290 2.8866 0.2846 0.2144
20 2.6351 3.0268 0.2471 0.1548 1.7969 3.1446 0.2772 0.1904
34 4.5646 5.2538 0.2613 0.1743 3.0932 5.4652 0.2851 0.2007
40 5.3452 6.1206 0.2584 0.1554 3.5445 6.2591 0.2770 0.1787

OEP EVa

Atom rs N −E −Ex −εL −εH −E −Ex −εH

Alb 2.07 2 0.0557 0.7016 0.5973 0.5973 0.0557 0.7016 0.5973
8 −0.0653 3.0248 0.8507 0.5416 −0.0653 3.0248 0.5417

18 −0.5998 7.0987 0.9608 0.4600 −0.5998 7.0987 0.4600
20 −0.5480 7.8071 0.9618 0.4326 −0.5480 7.8071 0.4316
34 −1.4354 13.7536 1.0298 0.4027 −1.4354 13.7535 0.4027
40 −1.6000 15.8913 1.0307 0.3956 −1.6001 15.8913 0.3955

Li 3.28 2 0.1866 0.5074 0.4203 0.4203 — — —
8 0.6714 2.0591 0.5076 0.3781 — — —

18 1.3952 4.7474 0.5352 0.3328 — — —
20 1.5689 5.1842 0.5295 0.3000 — — —
34 2.6040 9.0778 0.5533 0.3037 — — —
40 2.9865 10.4195 0.5464 0.2783 — — —
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Table 1. (Continued.)

OEP EVa

Atom rs N −E −Ex −εL −εH −E −Ex −εH

Na 3.93 2 0.1988 0.4428 0.3627 0.3627 0.1988 0.4428 0.3626
8 0.7470 1.7598 0.4162 0.3251 0.7470 1.7598 0.3252

18 1.6148 4.0354 0.4298 0.2888 1.6148 4.0354 0.2888
20 1.7956 4.3974 0.4237 0.2588 1.7956 4.3974 0.2600
34 3.0493 7.6870 0.4392 0.2659 3.0494 7.6870 0.2662
40 3.4920 8.8038 0.4320 0.2410 3.4920 8.8036 0.2414

K 4.96 2 0.1970 0.3693 0.2979 0.2979 — — —
8 0.7557 1.4319 0.3235 0.2660 — — —

18 1.6685 3.2639 0.3266 0.2383 — — —
20 1.8431 3.5490 0.3211 0.2134 — — —
34 3.1662 6.1934 0.3295 0.2214 — — —
40 3.6247 7.0744 0.3230 0.1994 — — —

Cs 5.63 2 0.1907 0.3335 0.2669 0.2669 0.1907 0.3335 0.2669
8 0.7345 1.2778 0.2826 0.2378 0.7345 1.2777 0.2378

18 1.6307 2.9044 0.2823 0.2139 1.6307 2.9043 0.2132
20 1.7980 3.1553 0.2773 0.1920 1.7980 3.1553 0.1925
34 3.0974 5.5020 0.2830 0.1994 3.0974 5.5020 0.1974
40 3.5462 6.2788 0.2766 0.1791 3.5465 6.2763 0.1795

a Data from [18].
b Here, N = 18 corresponds to the Al6 cluster and the other values of N do not correspond to real Al clusters.

maximum occupied and minimum occupied KS eigenvalues. For N = 2, we have 
 = 0.
The results show that the maximum relative contraction, |
OEP −
KLI|/
KLI, is 2.6%, which
corresponds to Cs18.

4. Summary and conclusion

In this work, we have considered the exchange-only jellium model in which we have used
the exact orbital-dependent exchange functional. This model is applied to the closed-shell
simple metal clusters of Al, Li, Na, K, and Cs. For the local exchange potential in the KS
equation, we have solved the OEP integral equation by the iterative method proposed recently
by Kümmel and Perdew [13]. By solving the self-consistent KS equations, we have obtained
the ground state energies of the closed-shell clusters (N = 2, 8, 18, 20, 34, 40) for the LSDA,
KLI, and OEP schemes. The KLI and OEP results are the same for neutral two-electron
clusters. However, for N �= 2, the densities and potentials in the KLI and OEP schemes
coincide for large r values. The OEP exchange and effective potentials show correct 1/r
behaviour in contrast to the incorrect exponential behaviour shown by the LSDA. The total
energies in the OEP scheme are more negative than those from the KLI scheme by 1.2% on
average. On the other hand, the exchange energies from the OEP scheme are about 0.33%
more negative than those from the KLI scheme, whereas they are about 9% more negative
than those from the LSDA. The widths of the occupied bands, εH − εL, in the OEP scheme
are contracted relative to those in the KLI scheme by at most 2.6%, which corresponds to
Cs18. In spite of the validity of the gradient expansion method for slow variations in density,
comparison of our OEP results with those of EV shows excellent agreement.
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[13] Kümmel S and Perdew J P 2003 Phys. Rev. B 68 035103
[14] Payami M 1999 J. Chem. Phys. 111 8344
[15] Payami M 2001 J. Phys.: Condens. Matter 13 4129
[16] Payami M 2004 Can. J. Phys. 82 239
[17] Krieger J B, Li Y and Iafrate G J 1992 Phys. Rev. A 46 5453
[18] Engel E and Vosko S H 1994 Phys. Rev. B 50 10498 (The unpublished Al and Cs data were provided by E Engel)

http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevLett.55.1665
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1063/1.477849
http://dx.doi.org/10.1103/PhysRev.90.317
http://dx.doi.org/10.1103/PhysRevA.14.36
http://dx.doi.org/10.1103/PhysRevB.26.4371
http://dx.doi.org/10.1103/PhysRevB.59.10031
http://dx.doi.org/10.1103/PhysRevLett.83.5459
http://dx.doi.org/10.1103/PhysRevLett.83.5455
http://dx.doi.org/10.1103/PhysRevLett.90.043004
http://dx.doi.org/10.1103/PhysRevB.68.035103
http://dx.doi.org/10.1063/1.480175
http://dx.doi.org/10.1088/0953-8984/13/18/320
http://dx.doi.org/10.1139/p04-004
http://dx.doi.org/10.1103/PhysRevA.46.5453
http://dx.doi.org/10.1103/PhysRevB.50.10498

	1. Introduction
	2. Calculational schemes
	3. Results and discussion
	4. Summary and conclusion
	Acknowledgments
	References

